
http://www.tuto rialspo int.co m/pytho n/pytho n_files_io .htm Copyrig ht © tutorialspoint.com

PYTHON FILES I/O

This chapter will cover all the basic I/O functions available in Python. For more functions, please refer to
standard Python documentation.

Printing to the Screen:

The simplest way to produce output is using the print statement where you can pass zero or more expressions
separated by commas. This function converts the expressions you pass into a string and writes the result to
standard output as follows:

#!/usr/bin/python

print "Python is really a great language,", "isn't it?";

This would produce the following result on your standard screen:

Python is really a great language, isn't it?

Reading Keyboard Input:

Python provides two built-in functions to read a line of text from standard input, which by default comes from the
keyboard. These functions are:

raw_input

input

The raw_input Function:

The raw_input([prompt]) function reads one line from standard input and returns it as a string (removing the
trailing newline).

#!/usr/bin/python

str = raw_input("Enter your input: ");
print "Received input is : ", str

This would prompt you to enter any string and it would display same string on the screen. When I typed "Hello
Python!", its output is like this:

Enter your input: Hello Python
Received input is : Hello Python

The input Function:

The input([prompt]) function is equivalent to raw_input, except that it assumes the input is a valid Python
expression and returns the evaluated result to you.

#!/usr/bin/python

str = input("Enter your input: ");
print "Received input is : ", str

This would produce the following result ag ainst the entered input:

Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]

http://www.tutorialspoint.com/python/python_files_io.htm

Opening and Closing Files:

Until now, you have been reading and writing to the standard input and output. Now, we will see how to play with
actual data files.

Python provides basic functions and methods necessary to manipulate files by default. You can do your most of
the file manipulation using a file object.

The open Function:

Before you can read or write a file, you have to open it using Python's built-in open() function. This function
creates a file object, which would be utilized to call other support methods associated with it.

Syntax:

file object = open(file_name [, access_mode][, buffering])

Here is paramters' detail:

file_name: The file_name arg ument is a string value that contains the name of the file that you want to
access.

access_mode: The access_mode determines the mode in which the file has to be opened, i.e., read,
write, append, etc. A complete list of possible values is g iven below in the table. This is optional parameter
and the default file access mode is read (r).

buffering : If the buffering value is set to 0, no buffering will take place. If the buffering value is 1, line
buffering will be performed while accessing a file. If you specify the buffering value as an integ er g reater
than 1, then buffering action will be performed with the indicated buffer size. If neg ative, the buffer size is
the system default(default behavior).

Here is a list of the different modes of opening a file:

Modes Description

r Opens a file for reading only. The file pointer is placed at the beg inning of the file. This is the
default mode.

rb Opens a file for reading only in binary format. The file pointer is placed at the beg inning of the file.
This is the default mode.

r+ Opens a file for both reading and writing . The file pointer will be at the beg inning of the file.

rb+ Opens a file for both reading and writing in binary format. The file pointer will be at the beg inning
of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist, creates a
new file for writing .

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the file does not
exist, creates a new file for writing .

w+ Opens a file for both writing and reading . Overwrites the existing file if the file exists. If the file
does not exist, creates a new file for reading and writing .

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file if the file
exists. If the file does not exist, creates a new file for reading and writing .

a Opens a file for appending . The file pointer is at the end of the file if the file exists. That is, the file is
in the append mode. If the file does not exist, it creates a new file for writing .

ab Opens a file for appending in binary format. The file pointer is at the end of the file if the file exists.
That is, the file is in the append mode. If the file does not exist, it creates a new file for writing .

a+ Opens a file for both appending and reading . The file pointer is at the end of the file if the file exists.
The file opens in the append mode. If the file does not exist, it creates a new file for reading and
writing .

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the end of the
file if the file exists. The file opens in the append mode. If the file does not exist, it creates a new file
for reading and writing .

The file object attributes:

Once a file is opened and you have one file object, you can g et various information related to that file.

Here is a list of all attributes related to file object:

Attribute Description

file.closed Returns true if file is closed, false otherwise.

file.mode Returns access mode with which file was opened.

file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true otherwise.

Example:

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode
print "Softspace flag : ", fo.softspace

This would produce the following result:

Name of the file: foo.txt
Closed or not : False
Opening mode : wb
Softspace flag : 0

The close() Method:

The close() method of a file object flushes any unwritten information and closes the file object, after which no
more writing can be done.

Python automatically closes a file when the reference object of a file is reassig ned to another file. It is a g ood
practice to use the close() method to close a file.

Syntax:

fileObject.close();

Example:

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name

Close opend file
fo.close()

This would produce the following result:

Name of the file: foo.txt

Reading and Writing Files:

The file object provides a set of access methods to make our lives easier. We would see how to use read() and
write() methods to read and write files.

The write() Method:

The write() method writes any string to an open file. It is important to note that Python string s can have binary
data and not just text.

The write() method does not add a newline character ('\n') to the end of the string :

Syntax:

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example:

#!/usr/bin/python

Open a file
fo = open("/tmp/foo.txt", "wb")
fo.write("Python is a great language.\nYeah its great!!\n");

Close opend file
fo.close()

The above method would create foo.txt file and would write g iven content in that file and finally it would close that
file. If you would open this file, it would have following content.

Python is a great language.
Yeah its great!!

The read() Method:

The read() method reads a string from an open file. It is important to note that Python string s can have binary
data and not just text.

Syntax:

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This method starts reading
from the beg inning of the file and if count is missing , then it tries to read as much as possible, maybe until the end
of file.

Example:

Let's take a file foo.txt, which we have created above.

#!/usr/bin/python

Open a file
fo = open("/tmp/foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
Close opend file
fo.close()

This would produce the following result:

Read String is : Python is

File Positions:

The tell() method tells you the current position within the file; in other words, the next read or write will occur at
that many bytes from the beg inning of the file.

The seek(offset[, from]) method chang es the current file position. The offset arg ument indicates the number of
bytes to be moved. The from arg ument specifies the reference position from where the bytes are to be moved.

If from is set to 0, it means use the beg inning of the file as the reference position and 1 means use the current
position as the reference position and if it is set to 2 then the end of the file would be taken as the reference
position.

Example:

Let's take a file foo.txt, which we have created above.

#!/usr/bin/python

Open a file
fo = open("/tmp/foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str

Check current position
position = fo.tell();
print "Current file position : ", position

Reposition pointer at the beginning once again
position = fo.seek(0, 0);
str = fo.read(10);
print "Again read String is : ", str
Close opend file
fo.close()

This would produce the following result:

Read String is : Python is
Current file position : 10
Again read String is : Python is

Renaming and Deleting Files:

Python os module provides methods that help you perform file-processing operations, such as renaming and
deleting files.

To use this module you need to import it first and then you can call any related functions.

The rename() Method:

The rename() method takes two arg uments, the current filename and the new filename.

Syntax:

os.rename(current_file_name, new_file_name)

Example:

Following is the example to rename an existing file test1.txt:

#!/usr/bin/python
import os

Rename a file from test1.txt to test2.txt
os.rename("test1.txt", "test2.txt")

The remove() Method:

You can use the remove() method to delete files by supplying the name of the file to be deleted as the arg ument.

Syntax:

os.remove(file_name)

Example:

Following is the example to delete an existing file test2.txt:

#!/usr/bin/python
import os

Delete file test2.txt
os.remove("text2.txt")

Directories in Python:

All files are contained within various directories, and Python has no problem handling these too. The os module
has several methods that help you create, remove and chang e directories.

The mkdir() Method:

You can use the mkdir() method of the os module to create directories in the current directory. You need to
supply an arg ument to this method which contains the name of the directory to be created.

Syntax:

os.mkdir("newdir")

Example:

Following is the example to create a directory test in the current directory:

#!/usr/bin/python
import os

Create a directory "test"
os.mkdir("test")

The chdir() Method:

You can use the chdir() method to chang e the current directory. The chdir() method takes an arg ument, which is
the name of the directory that you want to make the current directory.

Syntax:

os.chdir("newdir")

Example:

Following is the example to g o into "/home/newdir" directory:

#!/usr/bin/python
import os

Changing a directory to "/home/newdir"
os.chdir("/home/newdir")

The getcwd() Method:

The getcwd() method displays the current working directory.

Syntax:

os.getcwd()

Example:

Following is the example to g ive current directory:

#!/usr/bin/python
import os

This would give location of the current directory
os.getcwd()

The rmdir() Method:

The rmdir() method deletes the directory, which is passed as an arg ument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax:

os.rmdir('dirname')

Example:

Following is the example to remove "/tmp/test" directory. It is required to g ive fully qualified name of the
directory, otherwise it would search for that directory in the current directory.

#!/usr/bin/python
import os

This would remove "/tmp/test" directory.
os.rmdir("/tmp/test")

File & Directory Related Methods:

There are three important sources, which provide a wide rang e of utility methods to handle and manipulate files &
directories on Windows and Unix operating systems. They are as follows:

File Object Methods: The file object provides functions to manipulate files.

OS Object Methods: This provides methods to process files as well as directories.

/python/file_methods.htm
/python/os_file_methods.htm

	PYTHON FILES I/O
	Printing to the Screen:
	Reading Keyboard Input:
	The raw_input Function:
	The input Function:
	Opening and Closing Files:
	The open Function:
	Syntax:

	The file object attributes:
	Example:

	The close() Method:
	Syntax:
	Example:

	Reading and Writing Files:
	The write() Method:
	Syntax:
	Example:

	The read() Method:
	Syntax:
	Example:

	File Positions:
	Example:

	Renaming and Deleting Files:
	The rename() Method:
	Syntax:
	Example:

	The remove() Method:
	Syntax:
	Example:

	Directories in Python:
	The mkdir() Method:
	Syntax:
	Example:

	The chdir() Method:
	Syntax:
	Example:

	The getcwd() Method:
	Syntax:
	Example:

	The rmdir() Method:
	Syntax:
	Example:

	File & Directory Related Methods:

